Learning Relational Decision Trees for Guiding Heuristic Planning
نویسندگان
چکیده
The current evaluation functions for heuristic planning are expensive to compute. In numerous domains these functions give good guidance on the solution, so it worths the computation effort. On the contrary, where this is not true, heuristics planners compute loads of useless node evaluations that make them scale-up poorly. In this paper we present a novel approach for boosting the scalability of heuristic planners based on automatically learning domain-specific search control knowledge in the form of relational decision trees. Particularly, we define the learning of planning search control as a standard classification process. Then, we use an off-theshelf relational classifier to build domain-specific relational decision trees that capture the preferred action in the different planning contexts of a planning domain. These contexts are defined by the set of helpful actions extracted from the relaxed planning graph of a given state, the goals remaining to be achieved, and the static predicates of the planning task. Additionally, we show two methods for guiding the search of a heuristic planner with relational decision trees. The first one consists of using the resulting decision trees as an action policy. The second one consists of ordering the node evaluation of the Enforced Hill Climbing algorithm with the learned decision trees. Experiments over a variety of domains from the IPC test-benchmarks reveal that in both cases the use of the learned decision trees increase the number of problems solved together with a reduction of the time spent.
منابع مشابه
Scaling up Heuristic Planning with Relational Decision Trees
Current evaluation functions for heuristic planning are expensive to compute. In numerous planning problems these functions provide good guidance to the solution, so they are worth the expense. However, when evaluation functions are misguiding or when planning problems are large enough, lots of node evaluations must be computed, which severely limits the scalability of heuristic planners. In th...
متن کاملEnsemble-Roller: Planning with Ensemble of Relational Decision Trees
In this paper we describe the ENSEMBLE-ROLLER planner submitted to the Learning Track of the International Planning Competition (IPC). The planner uses ensembles of relational classifiers to generate robust planning policies. As in other applications of machine learning, the idea of the ensembles of classifiers consists of providing accuracy for particular scenarios and diversity to cover a wid...
متن کاملLearning Actions: Induction over Spatio-Temporal Relational Structures - CRG
We introduce a rule-based approach for learning and recognition of complex actions in terms of spatio-temporal attributes of primitive event sequences. During learning, spatio-temporal decision trees are generated that satisfy relational constraints of the training data. The resulting rules, in form of Horn clause descriptions, are used to classify new dynamic pattern fragments, and general heu...
متن کاملThe ROLLENT Planning and Learning System at the IPC-8 Learning Track
This paper describes the ROLLENT system submitted to the Eight International Planning Competition, Learning Track. ROLLENT combines two machine learning techniques: generation of entanglements and decision tree learning by ROLLER. Entanglements capture causal relationships for a class of problems while ROLLER learns relational decision trees useful to sort the applicable operators at a given st...
متن کاملROLLER: A Lookahead Planner Guided by Relational Decision Trees
In this paper we describe the version of the planner ROLLER submitted to the learning track of the International Planning Competition. This version, learns domain dependent general policies with the aim of improving a lookahead strategy for forward search planning. ROLLER performs the policy learning in a two-step classification process with the relational classifier TILDE. At the first step th...
متن کامل